IMPROVED PREPARATIONS OF DIFLUOROPHOSPHORYL AND DIFLUOROTHIOPHOSPHORYL ISOCYANATES. ALCOHOL AND THIOL ADDITION REACTIONS WITH ISOCYANATES

STEPHEN R. O'NEILL AND JEAN'NE M. SHREEVE* Department of Chemistry, University of Idaho, Moscow, Idaho 83843 (U.S.A.) (Received March 24, 1973)

SUMMARY

Methane thiol and ethane thiol add readily to trifluoromethyl thioisocyanate and difluorophosphoryl isocyanate in the presence of a solvent. These thiols, together with methanol and ethanol, form thiocarbamates and carbamates with difluorothiophosphoryl isocyanate. Both OPF₂NCO and SPF₂NCO have been prepared in 70–75% yields by the reaction of OPF₂Cl or SPF₂Cl with AgNCO.

INTRODUCTION

We report some recent studies on the addition of alcohols and thiols to fluorinated isocyanates, including difluorophosphoryl, difluorothiophosphoryl and trifluorothiomethyl isocyanates. The latter behaves as a typical isocyanate with many compounds that contain active hydrogen^{1,2}, but exceptions do occur and phenol, thiophenol, ethane thiol and triphenylcarbinol are reported not to add³. However, it has now proved possible to add methane thiol and ethane thiol to the nitrogen–carbon double bond of CF₃SNCO provided that the reactions are carried out under absolutely anhydrous conditions in acetonitrile as a solvent.

Earlier Olah⁴ synthesized OPF_2NCO and found that it reacted with alcohols and primary and secondary amines to give simple addition compounds with yields in excess of 90%. Other methods for the preparation of both OPF_2NCO^{5-7} and $SPF_2NCO^{8,9}$ are available, but reactions of diffuorophosphoryl chloride and diffuorothiophosphoryl chloride with silver isocyanate to form the phosphorus(V) isocyanates are more convenient and give higher yields.

^{*} Alfred P. Sloan Foundation Fellow, 1970-72.

Addition of thiols to OPF_2NCO and of thiols and alcohols to SPF_2NCO in solution occur rapidly to give thiocarbamates and carbamates in high yield. These compounds are readily sublimable, colorless, crystalline solids which readily hydrolyze in moist air.

EXPERIMENTAL

General methods

A standard Pyrex vacuum system equipped with a Heise-Bourdon tube gauge was used in all reactions. Infrared spectra were recorded with either a Perkin-Elmer Model 621 or a Perkin-Elmer Model 457 spectrometer using Nujol mulls between potassium bromide discs. A Hitachi Perkin-Elmer Model RMU-6E spectrometer operating at an ionization potential of 70 eV at 25° was used to record the mass spectra. Nuclear magnetic resonance spectra were obtained at 94.1 MHz (Varian HA-100) for ¹⁹F nuclei and at 60 MHz (Varian A-60) for ¹H nuclei. For fluorine or hydrogen, trichlorofluoromethane or tetramethylsilane was used as the internal reference in 25% solutions. Solvents used were dimethylsulfoxide, acetonitrile or diethyl ether. Elemental analyses were performed by Beller Mikroanalytisches Laboratorium, Göttingen, Germany. Melting points of the solid carbamates and thiocarbamates were determined by using a Thomas Hoover Uni-Melt capillary melting point apparatus. The solids were sealed in capillary tubes under an atmosphere of dry nitrogen.

Reagents

Silver isocyanate was prepared by the method described in the literature¹⁰. It was found necessary to prepare the fresh silver salt to avoid products attributable to the presence of hydrous silver oxide in the commercially available material. Diffuorophosphoryl isocyanate was obtained in 70% yield by condensing diffuorophosphoryl chloride¹¹ (10 mmol) on to silver isocyanate (1 g) at -195° and allowing it to react for 0.5 h at 25°. The pure OPF₂NCO was collected in a trap at -78° and its infrared spectrum compared with the published values^{4,7}. Diffuorothiophosphoryl isocyanate was prepared in 75% yield by the rapid reaction of diffuorothiophosphoryl chloride¹² (10 mmol) with a slurry of AgNCO (1 g) in acetonitrile. The infrared spectrum agreed with the literature values⁸, although our assignments differ (see below).

Trifluoromethylsulfenyl isocyanate was prepared by allowing CF₃SCl (10 mmol, PCR, Inc.) to react with silver isocyanate (1 g) in acetonitrile. The product was isolated in 50% yield using a trap cooled to -78° . Purity was determined by comparison of infrared spectra¹³. Methane thiol (Matheson) and ethane thiol (Aldrich Chemical Co.) were used as received.

General preparative procedure for fluorine-containing thiocarbamates and carbamates

Essentially the same method was employed in the preparation of all of the new carbamates and thiocarbamates. Dry acetonitrile (1 ml), the appropriate thiol

or alcohol (6 mmol) and isocyanate (2 mmol) were condensed into a reaction vessel. While the trifluoromethylsulfenyl isocyanate-thiol reaction required about 0.5 h for complete reaction to occur, the OPF₂NCO-thiol, SPF₂NCO-thiol or SPF₂NCO-alcohol reactions were complete in 5 min or less after warming to 25°. The yields of the colorless thiocarbamates were quantitative and these compounds were pure when the excess thiol and solvent were distilled away. However, further purification by sublimation of the carbamates resulting from the SPF₂NCO-alcohol reactions was necessary to free them from unidentified contaminants (detected by ¹⁹F NMR spectroscopy). The resulting yields were reduced to about 90%.

Elemental analyses and melting point, infrared spectral and ¹H and ¹⁹F NMR spectral data are given in Tables 1–3.

RESULTS AND DISCUSSION

All the new isocyanate derivatives are white crystalline solids which are readily hydrolyzed in moist air to the thiol or alcohol and are thermally stable at least to their melting points. The presence of a solvent is important; thus, in the absence of acetonitrile, trifluoromethylsulfenyl isocyanate required up to 6 h to react completely with methane thiol, whilst it did not react with ethanol thiol at all.

The mass spectra of these thiocarbamates and carbamates are typical¹⁴. With the exception of $SPF_2N(H)C(O)SCH_3$, molecule ions were not observed; base peaks were either PF_2^+ or CH_3^+ . No proton-fluorine or phosphorus-proton coupling was observed in the nuclear magnetic resonance spectra (Table 3). The chemical shifts and coupling constants observed are consistent with the proposed structures¹⁵.

Unfortunately, the C-H stretching activity in the infrared spectra is not clear due to similar Nujol frequencies that obscure or partially overlap with those due to the compounds. However, other stretching frequencies can be assigned as follows: v(N-H), between 3120 and 3240 cm⁻¹; v(C=O), between 1658 and 1733 cm⁻¹; v(P=O), at 1322 and 1330 cm⁻¹; asymmetric and symmetric v(P-F), between 870 and 965 cm⁻¹; v(C-F), between 1110 and 1175 cm⁻¹; and v(C-N), between 1077 and 1118 cm⁻¹. The P–N and P=S bands are more difficult to assign. The P–N linkage is sensitive to mass changes and its position is easily shifted ¹⁶. Phosphorus–nitrogen stretching vibrations are usually strong⁶, but sometimes medium, and occur reasonably within the range 680–847 cm⁻¹. In OPF₂NCO and SPF₂NCO, v(P-N) is assigned at 763 (s) and 815 (vs), cm⁻¹. Bands at 777 and 805 cm⁻¹ in OPF₂N₃ and OPF(N₃)₂ are also assigned to v(P-N), whilst in SPF₂N₃ and SPF(N₃)₂ bands at 825 cm⁻¹ in both cases were similarly assigned. Bands in the range 842–862 cm⁻¹ in the thiocarbamates and in the range 775–782 cm⁻¹ in the carbamates were also assigned to v(P-N).

Compound	M.p. (°C)	Found	(%)				Calcula	ted (%)			
		н	Ч	s	ပ	н	ц	പ	S	С	Н
OPF,N(H)C(O)SCH,	64-65	21,60	17.54	18.51	13.61	7.37	21.60	17 67	18 29	13.68	2.28
OPF, N(H)C(O)SCH, CH,	02-69	20.00	16.35	17 09	19.08	3 03	19 76	16 12	16.64	18 72	2 T C
SPF ₂ N(H)C(O)SCH ₃	60-61	19.70	16.08	33.42	12.62	2.14	19.87	16.21	33.47	12.56	2.09
SPF ₂ N(H)C(0)SCH ₂ CH ₃	6263	18.60	15.15	31.42	16.98	2.74	18.43	15.04	31.04	17.46	2.90
SPF ₂ N(H)C(0)OCH ₃	50-51	[17.55	18.52	13.72	2.14	1	17.70	18.27	13.70	2.28
SPF ₂ N(H)C(0)OCH ₂ CH ₃	56-57	1	15.84	17.48	19.10	3.22	1	16.40	16.93	19.04	3.17
CF ₃ SN(H)C(0)SCH ₃	32–33			33.01	1	1	1		33.50	1	;
CF ₃ SN(H)C(0)SCH ₂ CH ₃	34–35]	1	30.09		1	ł		31.22	ļ	ł
		i		-							

TABLE 1 ELEMENTAL ANALYSES AND MELTING POINTS

1

TABLE 2

OPF ₂ N(H)C(O)SCH ₃	3120 (m), *2920, *2860, 1710 (s), *1460, *1368, 1322 (m), 1109 (s), 965 (s), (br), 870 (m), 842 (m), *720, 648 (m).
OPF ₂ N(H)C(O)SCH ₂ CH ₃	3130 (m), 2920, 2860, 1700 (m), 1460, 1368, 1330 (m), 1112 (s), 955 (s), (br), 870 (mw), 842 (m), 645 (m).
SPF2NCO	2300 (vs), 1430 (s), 950 (vs), 930 (s), 815 (vs), 750 (vw), 600 (m), 420 (m).
SPF ₂ N(H)C(O)SCH ₃	3165 (m), 2920, 2860, 1660 (s), 1460, 1368, 1107 (m), 936 (m), 910, 888 (s), 860 (m), 713, 677 (m).
SPF ₂ N(H)C(O)SCH ₂ CH ₃	3175 (m), 2920, 2860, 1658 (s), 1460, 1368, 1104 (s), 938 (s), 910, 897 (s), 862 (m), 682 (m).
SPF ₂ N(H)C(O)OCH ₃	3240 (s), 2920, 2860, 1722 (s), 1460, 1368, 1260 (ms), 1097 (m), 963, 935 (s), 898, 782 (m), 740 (m), 692, 655 (m).
SPF ₂ N(H)C(O)OCH ₂ CH ₃	3220 (w), 2920, 2860, 1733 (s), 1460, 1368, 1305 (s), 1225 (w), 1077 (w), 1005, 955 (ms), 905 (s), 857 (ms), 775 (w), 720, 687 (m).
CF ₃ SN(H)C(O)SCH ₃	3230 (m), 2920, 2860, 1665 (s), 1460, 1368, 1300 (w), 1215 (w), 1175 (s), 1150 (s), 1118 (s).
CF ₃ SN(H)C(O)SCH ₂ CH ₃	3210 (s), 2920, 2860, 1675 (s), 1460, 1368, 1210 (w), 1170 (s), 1140 (s), 1110 (s).

* C-H modes in these regions obscured due to Nujol bands.

TABLE 3

	¹ H spectra			¹⁹ F spectra	
Compound	δ(CH ₃)	δ(CH ₂)	<i>J</i> (H-H)	φ*	J(P-F)
OPF₂N(H)C(O)SCH₃	2.36s			75.0	1080
OPF ₂ N(H)C(O)SCH ₂ CH ₃	1.26t	2.95q	7	72.5	1031
SPF ₂ N(H)C(O)SCH ₃	3.32s			44.7	1118
SPF ₂ N(H)C(O)SCH ₂ CH ₃	1.26t	2.92q	7	44.7	1128
SPF ₂ N(H)C(O)OCH ₃	3.26s	_		45.4	1068
SPF ₂ N(H)C(O)OCH ₂ CH ₃	2.76t	3.70q	7	46.9	1119
CF ₃ SN(H)C(O)SCH ₃	2.33s	_		50.7	
CF ₃ SN(H)C(O)SCH ₂ CH ₃	1.25t	2.90q	7	51.0	

	ιH	AND	19F	NMR	SPECTRA*	
--	----	-----	-----	-----	----------	--

* Chemical dufts, δ , and ϕ * values in ppm; coupling constants in Hz.

The stretching mode of P=S, although sometimes strong but generally of variable intensity and sometimes absent, most likely appears between 600-760 cm⁻¹. As fluorine atoms progressively replace chlorine in SPCl₃, v(P=S) decreases from 770 to 753 to 738 to 695 cm⁻¹ (in the gas phase)¹⁷. Except for a moderate band in SPF₃, the bands are intense. Whilst we assign the band at 750 (vw) cm⁻¹ in

SPF₂NCO to $\nu(P=S)$, others⁸ assign $\nu(P=S)$ to 815 cm⁻¹ which we attribute to $\nu(P-N)$. The latter has also been assigned to $\nu(P-F)^9$. In the compounds SPF₂N(H)C(O)SR and SPF₂N(H)C(O)OR, $\nu(P=S)$ modes are found in the range 677-692 cm⁻¹.

ACKNOWLEDGEMENTS

Fluorine research at the University of Idaho is supported by the National Science Foundation and the Office of Naval Research. We thank Dr. R. A. De Marco for the mass spectra and Dr. D. T. Sauer for the nuclear magnetic resonance spectra.

REFERENCES

- 1 A. HAAS, Chem. Ber., 97 (1964) 2189.
- 2 A. HAAS AND P. SCHOTT, Chem. Ber., 99 (1966) 3103.
- 3 A. HAAS IN E. A. V. EBSWORTH, A. G. MADDOCK AND A. G. SHARPE (Eds.), New Pathways in Inorganic Chemistry, Cambridge University Press, Cambridge, 1968, Chapter 5.
- 4 S. J. KUHN AND G. A. OLAH, Canad. J. Chem., 40 (1962) 1951.
- 5 H. W. ROESKY, Chem. Ber., 100 (1967) 2142.
- 6 H. W. ROESKY, Chem. Ber., 100 (1967) 2147.
- 7 O. GLEMSER, U. BIERMANN AND M. FILD, Chem. Ber., 100 (1967) 1082.
- 8 H. W. ROESKY, J. Inorg. Nuclear Chem., 32 (1970) 1845.
- 9 C. B. COLBURN, W. E. HILL AND D. W. A. SHARP, J. Chem. Soc. (A), (1970) 222.
- 10 R. E. NEVILLE AND J. J. MCGEE, Inorg. Synth., 8 (1966) 23.
- 11 H. W. ROESKY, Chem. Ber., 101 (1968) 636.
- 12 S. R. O'NEILL AND J. M. SHREEVE, Inorg. Chem., 11 (1972) 1629.
- 13 H. J. EMELÉUS AND A. HAAS, J. Chem. Soc., (1963) 1272.
- 14 H. BUDZIKIEWICZ, C. DJERASSI AND D. H. WILLIAMS, Mass Spectrometry of Organic Compounds, Holden-Day, Inc., San Francisco, 1967.
- 15 R. SCHMUTZLER, Adv. Fluorine Chem., 5 (1965) 254.
- 16 L. J. BELLAMY, The Infrared Spectra of Complex Molecules, Methuen, London, 1968.
- 17 J. R. DURIG AND J. W. CLARK, J. Chem. Phys., 46 (1967) 3057.